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Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number
of microscopic constraints expressing mass, entropy and magnetic flux conservation
in each infinitesimal fluid element, the latter preventing magnetic reconnection.
By contrast, in the Taylor relaxation model for formation of macroscopically
self-organized plasma equilibrium states, all these constraints are relaxed save
for the global magnetic fluxes and helicity. A Lagrangian variational principle
is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics
(RxMHD), such that all static solutions are Taylor states but also allows state with
flow. By postulating that some long-lived macroscopic current sheets can act as
barriers to relaxation, separating the plasma into multiple relaxation regions, a further
generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

1. Introduction
The coarse-grained, fluid-like dynamical behaviour of highly conducting magnetized

plasmas in the laboratory, in stars such as the sun and in space can often be described
by variants of magnetohydrodynamics (MHD).

The one-fluid, non-dissipative model most commonly used, ideal magnetohydro-
dynamics (IMHD), appears deceptively simple but is strongly constrained by an
infinite number of microscopic constraints expressing the detailed conservation
of mass, entropy and magnetic flux ‘frozen’ into each infinitesimal fluid element.
Physically, these are very restrictive constraints, e.g. the ‘entropy freezing’ constraint
prevents dynamical temperature equilibration along magnetic field lines, and the
‘flux-freezing’ constraint prevents changes in the topology of magnetic field lines,
thus preventing magnetic reconnection, island formation or formation of chaotic
lines. These constraints also give rise to mathematical problems due to a tendency
for singularities to form when systems are perturbed away from simple geometries
with a continuous symmetry, Grad (1967), Cary & Kotschenreuther (1985), Hegna
& Bhattacharjee (1989), Bhattacharjee et al. (1995), Hudson et al. (2012), Helander
(2014), Loizu et al. (2015a,b). It is the aim of this paper to formulate an alternative

† Email address for correspondence: robert.dewar@anu.edu.au

http://orcid.org/0000-0002-9518-7087
mailto:robert.dewar@anu.edu.au


2 R. L. Dewar, Z. Yoshida, A. Bhattacharjee and S. R. Hudson

self-consistent, non-dissipative single-fluid model for toroidal plasmas that is simpler
than IMHD yet is less physically restrictive and better posed mathematically in
general geometries.

The most powerful and general way to formulate a non-dissipative field theory,
see e.g. p. 53ff of Goldstein (1980), is to postulate a Lagrangian density L and to
derive the dynamical equations for all fields from the action, S = ∫ dt

∫
Ω
L d3x, by

appealing to Hamilton’s Principle. That is, by requiring that its first variation, δS ,
vanishes for all variations of the independent fields in the system region Ω . The
equations for these fields are the resulting Euler–Lagrange equations, which, as they
are all derived from the one scalar functional S , are automatically self-consistent.
Furthermore, conservation equations can be derived very generally by applying
Noether’s Theorem (see e.g. p. 555ff of Goldstein (1980), also Charidakos et al.
(2014) and references therein), based on the continuous symmetries of the system.
Holonomic constraints can be handled by expressing variations of dependent fields in
terms of those of the independent fields, and non-holonomic constraints by augmenting
the Lagrangian density using Lagrange multipliers. Our modified MHD is based on
the same Lagrangian as IMHD, but uses a much-reduced set of constraints, a small
subset of those implicit in IMHD.

In IMHD and our modifications of it, on the boundary ∂Ω of the overall plasma
region Ω (and on current sheets separating plasma subregions), the magnetic field B
is constrained everywhere to be a tangent vector

n ·B= 0, (1.1)

where n is the unit normal at each point on ∂Ω . Physically, this corresponds to the
assumption of confinement within a perfectly conducting wall (but not necessarily a
rigid wall if one wishes to model, for example, the response to an externally imposed
perturbation by switching on boundary ripple, Hahm & Kulsrud (1985), Dewar et al.
(2013), Comisso, Grasso & Waelbroeck (2015a,b)). In this paper, we assume for
simplicity that the wall has no gaps, so that the wall completely shields the plasma
from penetration of externally generated magnetic fluxes, but this restriction is not
essential for a Lagrangian formulation to be possible, Dewar (1978), Hosking &
Dewar (2015), and would need to be lifted if one wished to consider Ohmic current
drive or helicity injection.

In the following, we will partition Ω into interacting subregions Ωi, on the
boundaries of which the tangential-B constraint (1.1) is also enforced, but tangential
discontinuities due to current sheets on these interfaces are allowed. (A vacuum
region Ωv in which no IMHD invariants other than total magnetic fluxes are assumed,
can also be included between the wall and a plasma-vacuum interface.)

We also make the topological assumption that the plasma regions Ωi are toroids,
so their boundaries ∂Ω are tori, where by (generalized) tori we mean 2-dimensional
surfaces without boundary, conceivably multi-handled, and by toroids we mean three-
dimensional volumes bounded by a single torus (which we term a simple toroid) or
by an inner and an outer torus (an annular toroid) (see figure 1).

The single-fluid, non-dissipative MHD equations are encapsulated in the Lagrangian
density, Newcomb (1962), Dewar (1970),

LMHD ≡ 1
2
ρv2 − p

γ − 1
− B2

2µ0
, (1.2)

where ρ is the mass density, p is the pressure and µ0 is the permeability of free space.
The plasma is treated thermodynamically as an ideal gas with an isentropic (adiabatic)
equation of state, p/ργ = const. (In IMHD this is applied microscopically in each fluid
element.)
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FIGURE 1. Some possible relaxation regions, discussed in § 2.2. The innermost region, Ω0,
is a simple genus-1 toroid bounded by a torus ∂Ω0, formed from Γ −0,1a and Γ −0,1b (blue and
orange), the inward faces of the inner separatrix current sheets, Waelbroeck (1989), Wang
& Bhattacharjee (1995), of an m = 2, n = 1 magnetic island chain. The helical interiors
of the two islands of the chain, Ω1a and Ω1b, are also genus-1 toroids, bounded by the
tori obtained by joining Γ +0,1a with Γ −1a,2, and Γ +0,1b with Γ −1b,2, where Γ −1a,2 and Γ −1b,2 are
the inward faces of the outer separatrix current sheets (blue and orange).

The ideal (IMHD) equations of motion follow, Newcomb (1962), Dewar (1970),
from (1.2) by applying Hamilton’s principle of stationary action, treating trial
displacements of fluid elements from their physical positions as an arbitrarily
variable vector field, to which the variations of density ρ, and pressure p (or entropy
density) and magnetic field B, are holonomically constrained microscopically. A
(non-canonical) Hamiltonian formulation of IMHD, in which constraints appear
as degeneracies of Poisson brackets (some of which can be integrated as Casimir
invariants), is also possible, Morrison (1998), Yoshida & Dewar (2012), but the
Lagrangian approach provides a more convenient starting point for finding a modified
magnetohydrodynamics. A Hamiltonian formulation could be derived from our new
Lagrangian formulation, but this is not pursued in the present paper.

In strong contrast to IMHD, Taylor’s relaxed equilibrium model, Taylor (1974),
relaxes all the IMHD constraints save for conservation of toroidal magnetic flux and
global magnetic helicity (which are IMHD invariants), leading to a very low-energy
‘relaxed’ equilibrium state. Such a ‘Taylor state’ is a special static solution of the
IMHD equations, but is dynamically inaccessible via IMHD from arbitrary initial
states because of IMHD’s infinity of extra constraints. To elevate Taylor’s static
relaxed equilibrium theory to a relaxed magnetohydro-dynamics (RxMHD), we use the
Lagrangian (1.2) and the same holonomic density constraint as for IMHD, Newcomb
(1962), Dewar (1970), but treat the pressure and magnetic field as independently
variable fields subject only to conservation of global flux(es), entropy and magnetic
helicity within Ω , and the holonomic tangential-B constraint (1.1). This makes the
Taylor equilibrium state always dynamically accessible within RxMHD.

Physically, the Taylor model is designed to predict the final macroscopic∗
self-organized state to which a highly conducting plasma will evolve, provided it

∗By ‘macroscopic’ we mean a coarse-grained description in which the small-scale reconnection processes
are spatially and temporally unresolved, and also a description that is only correct in the limit that the
non-dimensional conductivity parameter (Lundquist number) increases toward infinity, the dynamo flows being
assumed to be higher order in inverse Lundquist number so that the Taylor state is a static, force-free MHD
equilibrium.
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has a stochastic mechanism for breaking the ‘freezing in’ of magnetic field by the
plasma, Rusbridge (1991), Qin et al. (2012), and for generating magnetic field by
small ‘dynamo’ flows. Since Taylor’s pioneering work, Taylor (1974), which invoked
the conservation of magnetic helicity in the relaxation of toroidal discharges, an
extensive literature has arisen on this topic, much of it reviewed by Taylor (1986).

Taylor’s original theory, Taylor (1974), applied globally throughout the plasma
with very few adjustable parameters and was remarkable for its success in modelling
toroidal field reversal and helical bifurcation in the highly turbulent reversed-field
pinch, Zeta. However, this simplicity restricts its ability to model better-confined
axisymmetric plasmas, Bhattacharjee & Dewar (1982), such as tokamaks or more
modern reversed-field pinches, whose modelling needs more constraints to increase
flexibility in matching observed profiles. It is even less adequate for modelling
non-axisymmetric systems, such as tokamaks (see e.g. figures 7 and 8 of Hudson
et al. (2012)) or reversed-field pinches, Dennis et al. (2013b), with weakly broken
symmetry; or stellarators designed from the outset to be non-axisymmetric.

As will be explained further in § 2.2, we are led to generalize Taylor’s theory
by replacing the smooth constraints of Bhattacharjee & Dewar (1982) with singular
constraints; macroscopic current sheets, Γi,j, which partition the plasma into multiple
relaxation regions Ωi. (These current sheets may be thought of as thin, flexible
sheets of ideal plasma, within which all the IMHD invariants apply, corresponding
to the ‘singular Casimir elements’ of Yoshida & Dewar (2012).) This leads to a
further dynamical generalization, multi-region relaxed MHD (MRxMHD), which we
anticipate will have a number of applications in modelling toroidal confinement
devices in which three-dimensional geometry effects are important. Current sheet and
relaxation theory applications are also ubiquitous in astrophysical contexts, Parker
(1994), though one has to deal in these applications with the constraint of pline tying,
not covered in this paper.

A new numerical approach to calculating plasma equilibria, using a static version of
MRxMHD, has been implemented in a code, SPEC, Hudson et al. (2012), particularly
useful in non-axisymmetric toroidal fusion confinement systems when most flux
surfaces are destroyed by field-line chaos. SPEC is also capable of reproducing
ideal-MHD calculations in systems with a continuous symmetry by using a large
number of nested annular toroidal subregions, Dennis et al. (2013a). This static
formulation has also recently been used to explore MHD singularities at resonant
magnetic surfaces, Loizu et al. (2015a,b). Interestingly, our MRxMHD formulation has
some striking similarities to an early computational ‘water bag’ approach proposed,
but apparently not developed further, by Potter (1976).

This paper attempts to construct a general formal framework for MRxMHD
from first principles in a pedagogic manner, citing related historical and recent
work where possible, indicating the scope of MRxMHD, and setting the stage for
further development and application. Taylor relaxation and helicity conservation are
reviewed in § 2.1, with generalizations discussed in § 2.2. In §§ 3.1 and 3.2 we
review standard fluid Lagrangian variational results, using a notational framework that
is formally precise for use in further work. The Lagrangian framework for MRxMHD
is developed in § 3.3, and MRxMHD dynamics is derived from Hamilton’s Principle
(of stationary action) in §§ 3.4 and 3.5, with constraints corresponding to our chosen
subset of IMHD invariants. Possible further developments are suggested in the
Conclusion. Appendix A reviews the simple thermodynamics used in MRxMHD and
appendix B reviews the boundary condition for the vector potential.
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2. Plasma relaxation
2.1. Helicity conservation and Taylor relaxation

The conservation of magnetic fluxes threading cuts through Ω (or Ωi in MRxMHD)
that leave it topologically connected follows simply from ∇ ·B= 0 and the boundary
condition (1.1) everywhere on ∂Ω (because of the no-gaps assumption mentioned in
the Introduction). Thus, while these fluxes are IMHD invariants, they must also be
invariants in any physical model; flux conservation is said to be completely robust.

As it is conserved even under reconnection (in the limit as resistivity approaches
zero, see e.g. equation (20) ff. of Jensen & Chu (1984)) and has a robust topological
interpretation (see e.g. Berger (1999) for a heuristic review or Arnold & Khesin (1998)
for a more mathematical treatment) the most robust of the remaining IMHD invariants
is widely accepted to be the magnetic helicity 2µ0KΩ , where, Bhattacharjee & Dewar
(1982), we define the invariant KΩ as

KΩ ≡
∫
Ω

A ·B
2µ0

dV, (2.1)

with A a vector potential giving B=∇×A and dV=d3x the volume element. Because
K has one less gradient of A than the magnetic energy,

WB
Ω ≡

∫
Ω

B2

2µ0
dV, (2.2)

it can also be argued, see e.g. § I.C of Taylor (1986), that, in a weakly resistive plasma
with small-scale turbulent fluctuations, K decays slower with time than WB.

Other general ideal invariants can be related by Noether’s theorems to some
symmetries in appropriate parameterizations of field variables in the IMHD action
(for example, the cross helicity

∫
Ω

v · B dV pertains to a relabelling symmetry in
the Lagrangian representation of the fields), Salmon (1988), Padhye & Morrison
(1996a,b), Webb & Zank (2007), Webb et al. (2014a,b), Araki (2015). However,
in the spirit of Taylor relaxation, we choose the minimal set required to obtain a
non-trivial solution and thus keep only KΩ as the only non-holonomic constraint
involving v or B.

It is readily shown, using the tangential-B condition (1.1), that KΩ is invariant
under gauge transformations A 7→ A + ∇χ as long as χ is single valued (implying
conservation of line integrals

∮
∂Ω

A · dl around loops on the boundary, which, by
Stokes’ theorem, is equivalent to the above-mentioned conservation of magnetic
fluxes). As tangential B is to be a holonomic constraint rather than a natural boundary
condition, we do not treat A on the boundary as freely variable and can constrain χ .
Thus we do not need to use either the Bevir–Gray (subtraction of products of toroidal
and poloidal loop integrals, Bevir & Gray (1982)) or relative helicity (subtraction of
vacuum-field helicity, Jensen & Chu (1984)) modifications of the helicity, the latter
fact also implying there is no physical necessity to decompose the magnetic field
into a vacuum (harmonic) and a plasma-current-generated component (though it may
still be useful conceptually and mathematically, Yoshida & Giga (1990), Yoshida &
Dewar (2012)).

The Woltjer–Taylor variational principle (originally proposed, though with less
physical motivation, by Woltjer (1958)) states that the final relaxed state is that
which minimizes the magnetic energy, (2.2) (the negative of which occurs in (1.2)),
under the magnetic helicity constraint, implemented by minimizing WB

Ω −µKΩ under
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variations of the magnetic vector potential A, µ being a Lagrange multiplier†. The
resulting Euler–Lagrange equation is the Beltrami equation,

∇×B=µB. (2.3)

This describes a force-free field, i.e. one with the current j=∇×B/µ0 parallel to B,
implying ∇p= 0 globally in an equilibrium plasma. Thus this single-region relaxation
principle describes only plasmas with no thermal confinement.

2.2. Generalization of Taylor relaxation
As the Woltjer–Taylor variational principle is not explicitly based on knowledge of
the detailed sub-macroscopic physics leading to relaxation and self-organization, its
applicability to modelling a given system can only be justified empirically.‡ We
have already remarked in the Introduction that in fact Taylor relaxation theory in
its original form is too simple to apply to modern fusion devices, but that it can
be extended naturally by supplementing magnetic helicity with further global ideal
invariants, thus preserving much of its simplicity but increasing its flexibility in
applications to modelling fusion plasmas.

The fundamental basis of our generalized MHD relaxation principles is the
requirement that the states they describe be a subset of the states allowed within
ideal MHD. This is ensured, Bhattacharjee & Dewar (1982), Dewar et al. (2008),
by using only constraints from a subset of those implied by IMHD. We take this
formal criterion as the paramount principle for constructing consistent modifications
of IMHD, regarding considerations of possible subscale physics that might lead
to breaking of some ideal invariants and not others only as an heuristic guide in
choosing an appropriate subset of IMHD constraints. For instance, in choosing
relaxation subregions in which to apply the Woltjer–Taylor variational principle, we
do not necessarily assume the magnetic field is wholly or partially chaotic, though
Beltrami solutions can accommodate such cases, Dombre et al. (1986). Justification
for the choice of constraints must ultimately be empirical, by comparison either with
experiment or ab initio simulations.

A generalization of the Taylor relaxation idea by increasing the number of
constraints was proposed by Bhattacharjee & Dewar (1982), but the smooth IMHD
invariants chosen then are not well defined in a non-integrable magnetic field with
islands and chaotic regions. More recently, Hudson, Hole & Dewar (2007), Dewar
et al. (2008), generalizations of Taylor relaxation theory were proposed based on
the assumption that Taylor-relaxed plasma can coexist with current sheets that
act as transport barriers partitioning Ω into multiple regions Ωi, invariant under
field-line flow, Hudson et al. (2012). To describe this approach we have introduced
the terminologies RxMHD when Ω is not partitioned, and MRxMHD when it is,
the D (for ‘dynamics’) being justified below. The δ-function currents in MRxMHD
are compatible with IMHD so they may be regarded as singular alternatives to the
smooth IMHD constraints of Bhattacharjee & Dewar (1982). As in Bhattacharjee &

†Such Beltrami constants µ have dimensions of inverse length and are not to be confused with the vacuum
permeability constant µ0 used in SI units.

‡This indeed is also true of ideal MHD, which is typically applied in fusion physics well beyond the
validity of the approximations required for using it to describe fusion plasmas (see e.g. § II.H of Freidberg
(1982)). In particular, particle mean-free-paths parallel to magnetic field lines are not short in high-temperature
plasmas, so modifications of IMHD that distinguish parallel and perpendicular physics have long been sought
in order to extend its applicability (e.g. the collisionless MHD of Freidberg (1987)).
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Dewar (1982), we also introduce entropy constraints to allow a non-trivial pressure
profile and retain the non-singular magnetic helicity invariant(s), (2.1), but separately
conserved in each MRxMHD subregion.

Our development of MRxMHD is implicitly based on the multiple time scale
scenario sketched below (a conceptual framework motivating the formal development;
whether there are situations where it approximates physical reality remains to be
explored in further work):

(1) A fast relaxation time scale during which all but a finite number of IMHD
constraints are broken through thermal diffusion and micro-reconnection
events (associated with unspecified mechanisms like micro-tearing turbulence,
high-order resonant structures§ and field-line chaos). On this time scale, the
system self-organizes into multiple Taylor states in disjoint subregions Ωi
with non-disjoint boundaries ∂Ωi (geometrically fixed on this time scale due
to plasma inertia) supporting current sheets on their common interfaces Γi,j
(recent simulations by Smiet et al. (2015) give some support for this scenario).
The tangential-B boundary condition, (1.1) is satisfied on both sides of these
interfaces, but in general B suffers a tangential discontinuity across them. (To
represent discontinuities across an interface Γi,j, we distinguish its inward and
outward faces Γ ∓i,j by the superscripts − and +, respectively, following McGann
et al. (2010).)

(2) An intermediate dynamical time scale (the time scale treated in this paper)
during which the plasma, including a number of embedded current sheets
separating subregions within which magnetic helicity, magnetic fluxes, mass and
entropy are conserved, evolves adiabatically with respect to the relaxation time
scale as the geometric shapes of the boundaries ∂Ωi evolve dynamically from
their initial conditions, and possibly in response to external forcing from the
‘switching on’ of boundary ripple, Hahm & Kulsrud (1985), Dewar et al. (2013),
Comisso et al. (2015a,b). Low-order resonant structures within the plasma that
are excited, Boozer & Pomphrey (2010), White (2013) by geometric change
resist the formation of magnetic islands by developing shielding current sheets.

(3) A long diffusion (possibly anomalous) time scale on which plasma and magnetic
flux leak and mix between subregions through weak spots in the current sheets
Γi,j, violating the mass and flux isolation of the subregions assumed in MRxMHD
and also violating entropy conservation. New subregions may form, changing the
topological structure of the system. Phenomena on this time scale are not treated
in this paper.

To illustrate these concepts, a multi-region case of interest is shown schematically
in figures 1 and 2: an island chain {Ω1a, Ω1b} twisting, with linking number 2,
Berger (1999), around a simple toroid Ω0, both contained within an annular toroid
Ω2. This illustrates the flexibility of the MRxMHD partition; it is not limited to
simply nested tori as it can include island or plasmoid chains. (This requires a more
complicated labelling system for the relaxation regions and current sheets, but if we
limit ourselves to primary island chains, we can still use a sequential numbering

§We use the terminology ‘resonant structure’ to denote a family of closed field lines, whose order is
the number of toroidal rotations they make before they close. A resonant toroidal flux surface is a special
case of such a structure, but transient resonant structures may form due to Sweet–Parker reconnection, Parker
(1994), initiated at initially isolated hyperbolic closed field lines such as the ‘X points’ of magnetic islands.
While numerical evidence, Longcope & Strauss (1993), Cordoba & Marliani (2000), that strictly δ-function
current sheets can form in finite time is not conclusive, it is a reasonable postulate in our coarse-grained,
long-reconnection-timescale MRxMHD model.
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(a) (b)

(c) (d)

FIGURE 2. Four sections of the regions shown in figure 1 at toroidal angles ζ = 0, π/2,
π and 3π/2, showing helical rotation of the islands Ω1a and Ω1b about the central region
Ω0. The outer region, Ω2, is an annular genus-2 toroid bounded by Γ +1a,2, Γ +1b,2 and Γ −2,v,
the plasma-vacuum interface (green torus).

system and indicate the component islands and separatrices of the chain using the
lettering scheme illustrated here.)

In single-region RxMHD, the topology of Ω determines the number, ν¶, of
independent fluxes Φ l, 16 l6 ν, that must be specified for uniqueness of a harmonic
(vacuum) field BH solution such that ∇ × BH = 0 in Ω , n · BH = 0 on ∂Ω . For
µ not an eigenvalue‖ of the Beltrami equation, (2.3), with homogenous boundary
conditions (see e.g. § IV of Taylor (1986)), specifying the ν fluxes Φ l also specifies
the Beltrami field uniquely, Yoshida & Giga (1990). Similarly, in MRxMHD we need
to determine the genus νi of each relaxation subregion and specify its fluxes Φ l

i ,
which are invariant under relaxation.

In the case of an annular toroid Ωi (e.g. Ω2 in figures 1 and 2), ∂Ωi consists of
two disjoint tori (e.g. Γ +1a ∪ Γ +1b and Γ −2 ). A standard single-handled torus (i.e. with
one hole) can be covered by a single coordinate chart, typically using a poloidal angle
θ and a toroidal angle ζ . Assuming its boundaries to be two such standard tori, the
genus of an annular toroid is ν = 2, as both toroidal and poloidal cuts are required to
make it simply connected.

¶The topologically genus (or first Betti number) ν is the number of cuts required to make Ω simply
connected. E.g. in a simple toroid (cf. Ω0 in figures 1 and 2), ν = 1, as a toroidal cut leaves it simply
connected.

‖In the present context this means µi below the lowest Beltrami eigenvalue in each Ωi, else the plasma
would be unstable to local tearing instability, in which case Ωi should be partitioned further to raise the
minimum eigenvalue, Dennis et al. (2013b).
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Higher-genus cases might arise in toroidal confinement when treating doublet/multi-
pinch, Taylor (1986), or bundle divertor, Stott, Wilson & Gibson (1977), configurations.
In the bundle divertor case, the plasma-vacuum boundary ∂Ω is a two handled torus,
which cannot be described by a single toroidal–poloidal coordinate system but must
instead be partitioned into two separate patches (coordinate charts). We shall not
consider such exotic cases further in this paper.

The conservation of the Φ l
i implies boundary constraints on the vector potential A:

From Stokes’ theorem

Φ l
i ≡
∫
σ l

i

B · n dS=
∮
γ l

i

A · dl, (2.4)

where n is the unit normal at a point on the lth topologically distinct surface of section
σ l

i cutting Ωi and γ l
i = ∂σ l

i ∈ ∂Ωi is a loop around the boundary of σ l
i , with direction

with respect to that of n given by the right-hand rule.
As the loops γ l

i lie on the boundary ∂Ωi, which is composed of the current-sheet
interfaces Γi,j where there are δ-function currents causing tangential discontinuities in
B, one might think the values of the loop integrals would depend on whether the loops
traverse the inner or outer faces of the Γi,j. However, it does not matter which faces
are used as B remains finite within the current sheet; hence, being of infinitesimal
width, a current sheet contains only infinitesimal flux. However, this continuity of its
loop integrals does not necessarily mean A itself is continuous across current sheets,
as a discontinuous gauge term ∇χ does not affect the loop integrals (provided χ is
single valued). This freedom allows a coordinate-dependent gauge to be used in each
relaxation region, as in the SPEC code, Hudson et al. (2012).

It is important to recognize that the fluxes Φ l
i depend only on magnetic fields within

Ωi, so their individual conservation constrains line integrals of A only around loops
that enclose the plasma within Ωi. However, taking into account the conservation of
all the Φ l

i leaves only the toroidal line integral
∮ tor
∂Ω

A · dl on the plasma–vacuum
interface unconstrained. This represents the external poloidal flux threading the hole
in the torus ∂Ω . While this flux is arbitrary as far as the physics of the plasma within
Ω is concerned, it is still conserved because we are assuming the wall acts as a
superconducting shell which traps the external poloidal flux threading it.

3. Lagrangian formulation via Hamilton’s principle
3.1. Lagrangian and Eulerian fluid kinematics

Central to the Lagrangian approach to fluid mechanics is the concept of fluid elements,
whose motions with respect to time t through a three-dimensional Cartesian frame
(points in which we designate by the vector x≡ xex + yey + zez), are described by a
family of feasible trajectories (pathlines respecting the constraints) xt= rt(x0), labelled
by x0, the initial positions of fluid elements at an arbitrary time t = t0. The fluid
elements are advected by the Eulerian velocity vector field v(x, t) to their positions
at arbitrary time t through the time evolution function rt(x) defined as the integral of
the following equation and initial condition

drt(x)
dt
≡ v

(
rt(x), t

)
, rt0(x)≡ x (3.1)

for all x in the domain of interest. (Note that this makes rt implicitly a function of
t0, which we can make explicit when needed using the notation rt(x | t0), constant
parameters such as t0 being listed after the vertical bar |.)
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Where an argument (other than t) is not specified, we treat rt as a map R3→ R3

(i.e. a 3-vector function of 3-vectors), but often it is necessary to recognize that it is
also a functional of v(x, t), which will be indicated explicitly when required using
the notation rt[v](x). This provides a very flexible notation that can be adapted for
generating other maps.

Suppose v is also a function of some time-independent parameter (say s, denoted
by v(x, t | s)) then rt will also be a function of s, denoted rt(x | s, t0). Suppose further
that x lies on an arbitrary curve x = f (s) at time t0 and denote the resulting family
of trajectories by Rt(s) ≡ rt(f (s) | s, t0). Differentiating both sides of the equation of
motion in (3.1) with respect to s, we have

d
dt

dRt

ds
= dRt

ds
· ∇v(Rt, t)+ ∂sv(Rt, t), (3.2)

where ∂s means the partial derivative with respect to s and ∇v denotes ∇xv(x, t).
We now use the special case of the above result where v is independent of s to build

up some useful differential-geometric evolution results. First, denoting an infinitesimal
line element advected by the fluid by dlt ≡ dRt, (3.2) immediately gives

d
dt

dlt = dlt
· ∇v. (3.3)

When acting on all points in a region Ω , the evolution function rt defines the
Lagrangian map, mapping an initial region Ω0 onto its image Ω t. From (3.3) applied
to the sides of an infinitesimal rhomboid within Ω t, the advection equation for
infinitesimal volumes dV t is found to be

d
dt

dV t = (∇ · v) dV t, (3.4)

which is equivalent to the evolution equation, (d/dt)J(t)= (∇ · v)J(t), for the Jacobian,
J(t)= dV t/dV0≡ ∂(xt, yt, zt)/∂(x0, y0, z0), of the transformation from initial coordinates
of fluid elements to the corresponding coordinates at time t.

Likewise, the boundary ∂Ω0 maps onto ∂Ω t, within which area elements dSt≡nt dSt

advect according to
d
dt

dSt = (∇ · v)dSt − (∇v) · dSt. (3.5)

Representing a Lagrangian map as a dynamical flow induced by an Eulerian velocity
field allows connection to be established with the modern Lie algebra approach to
fluid dynamics, Arnold & Khesin (1998). However, although Lie operator methods
are useful in Hamiltonian perturbation theory, Dewar (1976), the simpler Lagrangian-
based variational approach used in this paper avoids the need for most of this abstract
machinery. (Likewise for abstract differential geometry.) Nevertheless, we shall find
the extension of our Eulerian–Lagrangian mapping notation to include flows other than
time evolution makes for a compact notation, and, being semi-Eulerian, leads to a
more familiar form for the perturbation expansion of the Lagrangian than the strictly
Lagrangian approach, Dewar (1970).

Application of Hamilton’s Principle requires us to vary trial fluid element pathlines
to find the Euler–Lagrange equations that determine which such pathlines are actually
physical. Thus we introduce a new flow that maps the position vectors of fluid
elements from their unvaried positions at each time t to their varied positions at the
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same time by using a flow analogous to the Lagrangian map defined in (3.1), but
with t replaced by a dimensionless variation parameter ε (typically small), and with
the variational map generated by a variational velocity ν. Thus, in (3.1)–(3.5) replace
t with ε, the initial time t0 with 0, the time evolution flow rt[v] with the ε-flow rε[ν]
and the velocity v(x, t) with ν(x, ε | t), to give

drε(x)
dε
≡ ν (rε(x), ε) , rε=0(x)≡ x, (3.6)

with the parametric time-dependence (. . . | t) now left implicit.
The varied Lagrangian map rt[v∼] is now found by composing the unvaried

Lagrangian map with the variational map,

rt[v∼] ≡ rε[ν] ◦ rt[v], (3.7)

where ◦ denotes composition of functions: f ◦ g(x)≡ f (g(x)) and subscript ∼ denotes
a varied quantity. This implicitly defines the varied velocity field v∼, which is to be
found in terms of the unvaried position of a representative fluid element xt≡ rt(x0) as
the total time derivative of the varied position, xt

∼ ≡ rt[v∼](x0)≡ rε(xt | t), as

v∼(x∼, t)=Dt x∼, (3.8)

where x∼ here denotes the Eulerian representation of the varied position, x∼(x, t) ≡
rε(x | t), and Dt ≡ ∂t + v(x, t) · ∇ is the advective derivative.

In MRxMHD, we also need to consider the case of fluid elements on the common
interfaces (current sheets) Γi,j = ∂Ωi ∩ ∂Ωj separating subregions Ωi and Ωj. The
shape of the interface, which we represent as the level surface f(i,j) = 0 of an
appropriate smooth function f (x) changing monotonically across the surface, is
not known a priori so must be subject to variation in applying Hamilton’s Principle.
Thus we must introduce the variation parameter ε in representing Γi,j geometrically:
f(i,j)(x | t, ε)=±0. We use the notation xt

∼± to distinguish which side of the interface a
varied fluid element is on: f(i,j)(xt

∼± | t, ε)=±0. Taking the total derivative of left and
right-hand sides of this expression with respect to t, on both sides of the interface, we
find n · Jv∼K= 0, n≡∇f(i,j)/|∇f(i,j)| being the unit normal and J·K denoting the jump
in a quantity as the evaluation point crosses the interface (so J∂tf(i,j)(x | t, ε)K= 0, as
f(i,j) is assumed smooth). Similarly, total differentiation with respect to ε gives

n · JνK= 0, x ∈ Γ ±i,j . (3.9a,b)

This states that the normal component of ν is constrained to be continuous across
the interface, but otherwise it is unconstrained. Rather, Γi,j is advected with ν during
variations at constant t, just as it is under time evolution.

An exception is the case where the plasma is confined by a prescribed, though
possibly time dependent, boundary ‘wall’ (w). This is the special case that f(i,j=w) is
not a function of ε, so one obtains the constraint n · ν= 0 at constant t on Γ −(i,w), with
the tangential components unconstrained.

So far we have treated ε as a finite parameter, on a par with t. However, in this
paper we use the variational transformation only for calculating the first variation of
the action in Hamilton’s Principle, so we need the variational map only to linear order:
rε[ν](x)= x+ εν(x, 0 | t)+O(ε2). Thus, defining the Lagrangian variation in position
1x through x∼ = x + ε1x(x, t) + O(ε2), we have 1x(x, t) = ν(x, 0 | t). Similarly,
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defining the Lagrangian variation in velocity, 1v, to be such that v∼(x∼, t)= v(x, t)+
ε1v(x, t)+O(ε2), we have, from (3.8),

1v(x, t)=Dt 1x(x, t). (3.10)

In the above we have followed Newcomb (1962) in using 1f ≡ limε→0[f∼(x∼, ε |
t)− f (x, ε | t)]/ε to denote the Lagrangian variation in an arbitrary field f , while the
corresponding Eulerian variation δf is defined by δf ≡ limε→0[f∼(x, ε | t)− f (x, ε | t)]/ε,
i.e. with both the varied and unvaried field evaluated at the same, unvaried, position
x. Thus ∆ may be regarded as the operator limε→0 d/dε while δ is the operator
limε→0 ∂/∂ε.

By definition, the two operators are related by ∆= δ+1x · ∇. Applying both sides
to x, it is easily verified as a consistency check that δx= 0. Also, both δ and ∆ being
differential operators, the product rule, e.g. 1(fg) = (1f )g + g1f , and commutation
relation

1∇f =∇1f − (∇1x) · ∇f (3.11)

apply, and correspondingly for δ, where f (x, ε) and g(x, ε) are arbitrary.

3.2. Holonomically constrained and free variations
In this subsection we extend the general formalism developed above for fluid
kinematics to treat variation and perturbation of fields, specifically mass density
ρ(x, t), pressure p(x, t) and magnetic vector potential A(x, t) (and hence magnetic
field B≡∇×A).

The density (mass conservation) equation is the lowest and most robust one in the
hierarchy of moment equations used in deriving fluid models from kinetic theory. In
fact, freezing mass into fluid elements seems fundamental to any fluid theory, so we
build the holonomic mass conservation constraints ρ∼(xt

∼, t | ε) dV t
∼ = ρ(xt, t) dV t =

ρ(x0, t0) dV0 into both IMHD (as in Newcomb (1962), Dewar (1970)) and into our
new MRxMHD formulation. From (3.4) and its ε-flow analogue, these imply

dρ
dt
=−ρ∇ · v, dρ∼

dε
=−ρ∼∇ · ν, (3.12a,b)

or, decomposing d/dt as ∂t + v · ∇, d/dε as ∂ε + ν · ∇,

∂ρ

∂t
=−∇ · (ρv),

∂ρ∼
∂ε
=−∇ · (ρ∼ν). (3.13a,b)

As explained above, the Lagrangian variation in density is 1ρ = dρ∼/dε |ε=0, and the
Eulerian variation is δρ = ∂ρ∼/∂ε |ε=0. That is, from (3.12) and (3.13),

1ρ =−ρ∇ ·1x ⇔ δρ =−∇ · (ρ1x). (3.14)

In MRxMHD (unlike IMHD, Newcomb (1962), Dewar (1970)) pressure and
magnetic field ∇ × A are not holonomically constrained by the freezing of entropy
and flux microscopically into each fluid element but are freely variable, expressed by
writing pressure and vector potential as p(x, t|ε) and A(x, t|ε), with their ε-derivatives
δp and δA being arbitrary variations in Hamilton’s Principle (as is 1x). (This is not
of course to say Lagrangian variations of free, i.e. not holonomically constrained,
fields do not exist, but rather that their Eulerian variations δ are primary, with their
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Lagrangian variations being defined by the rule ∆= δ +1x · ∇ above.) The relation
of interface kinematics to the holonomic tangential-B constraint, (1.1), is developed
in appendix B.

Consider an integral of the form L = ∫
Ω
LdV , where L is a function of various

fields to be varied in Hamilton’s Principle (in our case ρ, v, p and A), which are thus
functions of ε. By differentiating L with respect to ε, using the ε-flow analogue of
(3.4) (after changing variables to x0, y0, z0, where, as in Frieman & Rotenberg (1960),
superscript 0 refers to ε = 0) and integration by parts (Gauss’ theorem) we find the
convenient identity

δL=
∫
Ω

δL dV +
∫
∂Ω

L1x · dS, (3.15)

which allows us to use the Eulerian variations δ = ∂ε defined above to restrict the
occurrence of 1x to those fields (ρ and v) that are constrained to vary with fluid
motions. (An alternative, but equivalent, approach is to transform to x0, y0, z0 at the
outset, using Lagrangian variations and the ε-flow analogue of (3.5) to obtain surface
terms.)

In applying (3.15) to compute the action variation δS = ∫ dt
∫
Ω t dVL, further

surface terms will arise after straightforward integration by parts to remove spatial
derivatives of 1x. However, the integration by parts arising from terms containing
time derivatives is more subtle because it involves a change of variables from x, y, z
to x0, y0, z0 to enable integration by parts, and then a change back to x, y, z. In our
case, the only such term arises from the kinetic energy term, a function of v, the time
derivative arising from the Eulerian variation δv =1v −1x · ∇v = Dt1x−1x · ∇v
by (3.10).

Consider a Lagrangian density of the form L(v). Then, noting that 1x is always
taken to vanish at the endpoints of the time integration in Hamilton’s Principle, and
using (3.4) we find the contribution to the action from δv,∫

dt
∫
Ω

dVδv ·
∂L
∂v
=−

∫
dt
∫
Ω

dV1x · (I∇ · v +∇v + IDt) ·
∂L
∂v
, (3.16)

which has no surface term.

3.3. Lagrangian formulation of MRxMHD
To derive the dynamics of multi-region relaxed plasmas we use the same Lagrangian
density LMHD as in (1.2), integrating over each subvolume Ωi and augmenting with
appropriate Lagrange multiplier terms to form the Lagrangian in Ωi, Li. We then sum
to form the total effective Lagrangian

L= Lv +
∑
i∈R

Li, (3.17)

where R denotes the set of plasma relaxation regions, with their Lagrangians Li being
given by

Li = LMHD
i + τi(Si − Si0)+µi (Ki −Ki0) , (3.18)

where LMHD
i is given by the integral of LMHD, defined in (1.2), over Ωi, the Si are

the entropy invariants (mSen in the notation of appendix A) given by integrating the
right-hand side of (A 4) over Ωi,

Si ≡
∫
Ωi

ρ

γ − 1
ln
(
κ

p
ργ

)
dV, (3.19)
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and the magnetic helicity invariants Ki are as in (2.1), evaluated over Ωi. (The constant
κ , required to make the argument of ln dimensionless, is arbitrary for our purposes
but is identified physically in appendix A.)

The Lagrange multipliers τi and µi are constant during variation in Hamilton’s
Principle (i.e. are independent of ε) but may change with t, as they must be chosen
to make Si = Si0 and Ki = Ki0 during evolution under the Euler–Lagrange equations.
The constant reference values Si0 and Ki0 are the respective initial values at t = t0
evaluated over Ωi0, making Li = LMHD

i when the τi and µi are adjusted to satisfy
the conservation conditions above. Subtracting off the constant Ki0 also makes Li
independent of the constant κ (because of the holonomic conservation of

∫
ρ dV),

so the curious fact that the physical value of κ , (A 5), involves Planck’s constant is
irrelevant.

If there is a vacuum region, Ωv, between a plasma–vacuum interface and the wall,
then this may be treated similarly, but with ρ set to zero and with the entropy and
helicity constraints deleted, leaving the Lagrangian density

Lv =−B ·B
2µ0

. (3.20)

After applying (3.15)–(3.16) and appropriate integration by parts, the variation of
the action must be of the general form

δS =
∫

dt
∑
i∈R+

∫
Ωi

dV
(
δA ·

δSi

δA
+ δpδSi

δp
+1x ·

δSi

δx

)
+
∫

dt
∑
i∈R+

∫
∂Ωi

dS
δSi

δx

∣∣∣∣
∂Ωi

· 1x, (3.21)

where R+ denotes the set of plasma relaxation regions plus the vacuum region (though
note that only the variational derivative δSv/δA is non-zero in Ωv). The interval over
which the time integral is taken does not need to be specified as variations at the
endpoints are taken to vanish in Hamilton’s Principle.

Hamilton’s Variational Principle is the statement that the Euler–Lagrange equations
following from requiring δS = 0 for all variations of the independent fields determine
these fields physically. In the above variational derivative notation, these are the Euler–
Lagrange equations δSi/δA=0, δSi/δp=0, δSi/δx=0 within the volumes Ωi. To find
the surface Euler–Lagrange equations the constraint (3.9) needs to be considered, the
consequences of which will be discussed in § 3.5.

3.4. Volume variations

Inserting (3.18) in (3.17), varying S = ∫ L dt, integrating by parts and comparing with
(3.21), we identify the variational derivative with respect to the vector potential as

δSi

δA
=− 1

µ0
(∇×B−µiB) , (3.22)

giving as the corresponding Euler–Lagrange equation, δSi/δA = 0, the Beltrami
equation (2.3). In the case of the vacuum Lagrangian Lv, µi is set to zero, giving the
statement that the vacuum field is harmonic, ∇ × B= 0. (While the Euler–Lagrange
equation in the vacuum region is the same as the Beltrami equation with µ set to zero,
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note that we have actually deleted the constraint of constant magnetic helicity in the
vacuum region, so the vacuum is not completely equivalent to a currentless plasma.)

The variational derivative with respect to the pressure is

δSi

δp
= ∂Li

∂p
=− 1

γ − 1

(
1− τi

ρ

p

)
, (3.23)

the corresponding Euler–Lagrange equation being

p= τiρ, (3.24)

with τi identified (see (A 2)) as the specific temperature Ti/m in Ωi, where m is the
effective ion mass mi/Zeff (τi is also C2

i , where Ci is the ion sound speed).
Note that, despite using internal energy and entropy densities consistent with a

microscopically isentropic equation of state, we have only enforced macroscopic
entropy conservation over a whole subregion, leading to the microscopically
isothermal equation of state (3.24) (τi being spatially constant). Rapid equilibration of
temperature within Ωi is compatible with magnetic surfaces being destroyed within a
relaxation region, hence poor local thermal confinement, but the bounding interfaces
are assumed to be thermal transport barriers so the temperature can jump across
each interface. Thus, while temperature profiles are restricted to being piece-wise
constant, they are otherwise arbitrary, enabling the use of MRxMHD to model hot,
magnetically confined plasmas (see e.g. Hudson et al. 2012).

As already remarked, the Lagrange multipliers µi and τi may change with time
to maintain the constancy of their respective constraints. Now that the τi have been
identified as temperatures, a simple thought experiment makes it physically clear that
this must be so: suppose the ρi, and thus the pi, are spatially constant within each
Ωi, then, just as for adiabatically deformed bags of ideal gas, τiV

γ−1
i = const. and any

change in volume Vi leads to a change in temperature τi.
Using (3.14) and (3.16) we then find the variational derivative with respect to fluid

element positions

δSi

δx
= −∂t(ρv)−∇ · (ρvv)− ρ∇v

2

2
+ ρ∇ ∂Li

∂ρ

= −∂t(ρv)−∇ · (ρvv)+ τiρ

γ − 1
∇

(
∇p
p
− γ ∇ρ

ρ

)
= −∂t(ρv)−∇ · (ρvv + p I), (3.25)

where the last line follows from the isothermal equation of state (3.24). The
corresponding Euler–Lagrange equation δSi/δx = 0 is the equation of motion for
a compressible Euler fluid in momentum conservation form. Note the extraordinary
simplicity of this result, with v being decoupled from B as the Beltrami equation
(2.3) implies the Lorentz force j× B is zero, showing that MRxMHD supports only
steady flows and sound waves, with phase velocity (T/m)1/2, within the relaxation
regions. (However surface waves on the interfaces can involve perturbations of B.)

3.5. Surface variations
It is shown in appendix B that tangential B at the interfaces Γi,j implies a holonomic
constraint on variations of the tangential component, Atgt ≡ (I − nn) ·A, of the vector
potential,

(δA)tgt = (1x×B+∇δχ)tgt, (3.26)
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for all x on the interface or boundary, where δχ is an arbitrary single-valued
gauge potential. The normal component n · δA is unconstrained. It is also shown
in appendix B that this constraint implies invariance of line integrals of A around
loops on these surfaces, and thus conservation of flux does not need to be imposed
as an extra constraint.

Taking into account § 3.5, the surface variational derivative in (3.21) is found to be

δSi

δx

∣∣∣∣
∂Ωi

=
(

p+ B2

2µ0

)
ni, (3.27)

which is the velocity-independent part of the stress tensor, Dewar (1970) dotted
with ni.

However, before we can apply this result, we need to take into account the fact
that a boundary ∂Ωi is made up of interfaces between Ωi and neighbouring regions
Ωj (say) across which, by (3.9), the normal components of 1x are continuous. Taking
into account the outward normals of contiguous regions being oppositely directed, this
implies the constraint 1x · ni=−1x · nj on the common interfaces Γi,j. This coupling
gives the surface Euler–Lagrange equation, the natural boundary condition between
interfaces, as the continuity condition

s
p+ B2

2µ0

{
= 0, (3.28)

which is the same as the jump condition for advected discontinuities in ideal MHD
(ee e.g. § 5.12 of Hosking & Dewar (2015)). (The tangential components 1xtgt are
separately variable, but give no natural boundary conditions because they do not
appear in δS .)

4. Conclusion
We have built a general framework on which to develop relaxed-MHD dynamics

further. Some avenues to be explored are indicated below:

(i) Stationary states with flow: if one invokes a modified form of the ‘imaginary
experiment’ of Kruskal & Kulsrud (1958) in which the fictitious friction force
acts only on interface movements, and is sufficiently strong so as to allow only
movements which are slow compared with a characteristic sound transit time,
then negligible sound wave energy will be excited (see § 2.2) and the system
will relax to a static equilibrium state or one with steady flow. Thus action
extremization would seem to provide a more physically intuitive framework
for variational construction of equilibria with flows than one based on energy
minimization, which requires an arbitrary angular momentum constraint, Dennis
et al. (2014) to keep the kinetic energy from being minimized to zero.
It also does not seem necessary to invoke the cross-helicity invariant, Hameiri
(2014), Dennis et al. (2014), mentioned in § 2.1.

(ii) Spectral and stability studies with and without flow: by including the kinetic
energy in a natural way, our dynamical formulation of MRxMHD provides a
physical normalization for the linear growth rates of instabilities to replace the
artificial one derived previously using an energy principle, Hole, Hudson &
Dewar (2007), Mills, Hole & Dewar (2009).
The dynamical formulation also suggests performing simulations using the
water-bag approach, Potter (1976), for exploring the nonlinear evolution and
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possible saturation of instabilities. This may, for instance, help resolve the
paradox that existence of equilibrium interfaces seems to be contingent on having
highly irrational rotational transforms on the domain boundaries ∂Ωi, McGann
et al. (2010), McGann (2013), but fixing rotational transform is incompatible
with the constancy of the helicity invariants in general. Simulation may also be
a useful way to explore formation of singularities at resonant surfaces, Loizu
et al. (2015a,b).

(iii) Exploration of the possibility of including reconnection in MRxMHD by allowing
a slow leak of flux and plasma through the interfaces.

Appendix A. Application of ideal-gas thermodynamics to plasmas
The thermodynamics involved in MRxMHD is elementary, being the same as for an

ideal gas. However, the expressions used here for the internal energy density p/(γ −1)
and entropy constraint density ρ ln(κp/ργ )/(γ − 1) introduced in Bhattacharjee &
Dewar (1982) (an essentially arbitrary constant quantity κ here being inserted to
make the argument of the logarithm dimensionless) are somewhat different from
the expressions found in most thermodynamics texts. Thus we briefly review their
derivation from standard thermodynamics and its adaptation to MHD (extending the
discussion in Dewar et al. (2008)).

First recall that, for a single-species ideal gas of absolute temperature TK (in degrees
Kelvin) whose atoms are of mass m and number density is n, the mass density ρ is
mn and the pressure p is nkBTK , where kB is Boltzmann’s constant. The internal energy
U is (3/2)nVkBTK = pV/(γ − 1), where V is the volume of the system and γ = 5/3
is the ratio of specific heats. The statistical mechanical entropy SK (in units such that
a heat increment is dQ= TKdSK) is given by the Sackur–Tetrode equation

SK =NkB

{
ln

[
V
N

(
4πm
3h2

U
N

)3/2
]
+ 5

2

}
, (A 1)

where N = nV is the number of particles and h is Planck’s constant.
In plasma physics, temperature T is measured in energy units, i.e. T = kBTK , the

corresponding entropy in energy units being Sen = SK/kB in order that dQ = TdSen.
Also there are two species, ions and electrons, to take into account, their number
densities being denoted ni and ne, respectively. If Zeff is the effective ionization state
then, to a very good approximation, ni = ne/Zeff to maintain quasineutrality. Then the
total pressure p≡ neTe + niTi becomes ne(Te + Ti/Zeff ).

The MRxMHD assumption that current sheets on magnetic surfaces act as transport
barriers is most justifiable if Te� Ti, the small gyroradius of the electrons providing
good confinement across magnetic field lines and their rapid motion along field lines
providing fast thermal equilibration on magnetic surfaces and within the chaotic
relaxation regions. Thus we henceforth assume the ions are cold, Ti/Te� 0. However,
the mass density is dominated by the ions because me/mi� 0.

Simplifying notation by denoting ne by n and Te by T , and defining an effective
particle mass m=mi/Zeff , we summarize these approximations as

ρ = nm and p= nT. (A 2a,b)

To adapt standard thermodynamics we model the plasma as a monatomic gas at
temperature T made up of particles of mass m (except in the de Broglie term in (A 1),
where we use me) and write the Sackur–Tetrode equation (A 1) as

mSen = Vsm, (A 3)
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where we have derived the entropy constraint density used in (3.18) as

sm = ρ

γ − 1
ln
(
κ

p
ργ

)
, (A 4)

the hitherto arbitrary non-dimensionalizing constant κ now being identified as

κ ≡ 4πme(me)γ

3(γ − 1)h2
. (A 5)

Appendix B. Vector magnetic potential boundary constraints
In this appendix we seek to justify the holonomic constraint (3.26) on a plasma

or vacuum region boundary ∂Ω . Also, to verify that magnetic fluxes are conserved
under variation, we need to show line integrals

∮
A · dl around loops on the interface

are invariant under displacements of the interface. While (3.26) is as expected from
the ideal MHD result, Bernstein et al. (1958), that δB=Q≡∇× (1x×B), it needs to
be justified for MRxMHD because we make no frozen-in-flux assumption other than
the tangential-B constraint. Within the subregions Ωi, the IMHD result δB=Q does
not in general apply.

We first consider the problem of propagation of the tangential-B condition (1.1) on a
time-dependent surface Γ t and then adapt the results to find the analogous ε-variations
at fixed t. First, from (1.1) and (3.5) we have (suppressing the superscripts t unless
needed to emphasize time dependence)

d
dt
(B · dS)= dB

dt
· dS−B · (∇v) · dS= 0. (B 1)

Dividing by dS and using the definition dB/dt≡ ∂B/∂t+ v · ∇B we thus find

n ·
∂B
∂t
= n · ∇× (v×B) on Γ. (B 2)

(NB: This is obviously consistent with the IMHD equation ∂tB=∇× (v×B), but is
derived completely generally and is thus applicable to MRxMHD as well.)

Substituting B=∇×A in (B 2) we easily find n · ∇× (∂tA− v×B)= 0, which is
equivalent to

1
|∇f |∇ ·

[
∇f ×

(
∂A
∂t
− v×B

)]
= 0 on Γ, (B 3)

where f is a differentiable function such that f (x, t)= const. on Γ t (as in the last two
paragraphs of § 3.1) and we have used the identity ∇×∇f ≡ 0.

Although (B 3) is written using three-dimensional Cartesian vector calculus notation,
it applies only on the two-dimensional surface Γ . We now resolve this seeming
paradox by transforming to a curvilinear coordinate system f , g, h such that the basis
vectors ef ≡∇f = n |∇f |, eg ≡∇g and eh ≡∇h are linearly independent, so that the
pair h, g specifies a point on Γ : f = const. and ∇≡ ef ∂f + eg∂g + eh∂h.

Using the identity J ∇ · u ≡ ∂f (J ef · u) + ∂g(J eg · u) + ∂h(J eh · u), where J ≡
1/ef · eg × eh and u is an arbitrary vector field, and choosing u=∇f × (∂tA− v×B),
we find (B 3) is equivalent to

∂g

[
J∇g · ∇f ×

(
∂A
∂t
− v×B

)]
+ ∂h

[
J∇h · ∇f ×

(
∂A
∂t
− v×B

)]
= 0. (B 4)
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As the left-hand side does not contain the normal derivative ∂f , it is a surface
divergence operating purely on values of u evaluated at the surface Γ . Thus the
nature of the spatial dependence of B(x, t) away from Γ t is immaterial to the
evaluation of the boundary condition (B 3); in particular, B does not need to have
nested magnetic surfaces. (Likewise the off-surface dependence of f (x, t) is irrelevant,
as |∇f | cancels in the product J∇f = n/n · ∇g×∇h.) We also note, using (1.1), that
∂tA − v × B = ∇f × [(∂tA)tgt + vnB], so that only the tangential components of ∂tA
and the normal velocity component vn ≡ n · v contribute.

Clearly, the general solution of (B 3) is ∇f × (∂tA− v×B)=∇f ×∇∂tχ , where χ
is an arbitrary gauge potential. Crossing both sides with n/|∇f | and rearranging gives
the alternative form (

∂A
∂t

)
tgt

=
(

v×B+∇ ∂χ
∂t

)
tgt

. (B 5)

Replacing t with ε and v≡ drt(x)/dt with drε(x)/dε in (B 5) and taking the limit as
ε→ 0 (cf. discussion after (3.10)) gives the desired variational holonomic constraint
(3.26).

To show invariance of loop integrals
∮

A · dl under boundary and interface
displacements, on surfaces that are not simply connected, we first show 1(A · dl)=
1A · dl+ A ·1dl is a complete differential on these surfaces. From the epsilon-flow
analogue of (3.3), 1dl= dl · ∇1x. Using the constraint (3.26) we find

1(A · dl) = dl · [δA+1x · ∇A+ (∇1x) ·A]
= dl · [1x× (∇×A)+∇δχ + 1x · ∇A+ (∇1x) ·A]
= dl · ∇(1x ·A+∇δχ), (B 6)

which is a perfect differential as required. Thus, there is zero variation in line integrals
around loops provided we also require δχ to be single valued.
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